1% for the planet logo
Trial Size Available Flag

HDAC5 (E6G3N) Mouse mAb #98329

Filter:
  • WB
  • IP
  • ChIP
Western blot analysis of extracts from various cell lines using HDAC5 (E6G3N) Mouse mAb.

To Purchase # 98329

Supporting Data

REACTIVITY H M R Mk
SENSITIVITY Endogenous
MW (kDa) 140
Source/Isotype Mouse IgG2a kappa
Application Key:
  • WB-Western Blotting 
  • IP-Immunoprecipitation 
  • ChIP-Chromatin Immunoprecipitation 
Species Cross-Reactivity Key:
  • H-Human 
  • M-Mouse 
  • R-Rat 
  • Mk-Monkey 
  • Related Products

Product Information

Product Usage Information

For optimal ChIP results, use 10 μL of antibody and 10 μg of chromatin (approximately 4 x 106 cells) per IP. This antibody has been validated using SimpleChIP® Enzymatic Chromatin IP Kits.

Application Dilution
Western Blotting 1:1000
Immunoprecipitation 1:200
Chromatin IP 1:50

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Protocol

Specificity / Sensitivity

HDAC5 (E6G3N) Mouse mAb recognizes endogenous levels of total HDAC5 protein. This antibody does not cross-react with other HDAC proteins, including HDAC4 and HDAC7.

Species Reactivity:

Human, Mouse, Rat, Monkey

Source / Purification

Monoclonal antibody is produced by immunizing animals with recombinant protein specific to the amino terminus of human HDAC5 protein.

Background

Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

Pathways

Explore pathways related to this product.


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
SimpleChIP is a registered trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.