1% for the planet logo
Trial Size Available Flag
Recombinant Flag
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

NF-κB1 p50 (F8H1O) Rabbit mAb #49095

Filter:
  • WB
Western Blotting Image 1: NF-κB1 p50 (F8H1O) Rabbit mAb
Western blot analysis of extracts from various cell lines using NF-κB1 p50 (F8H1O) Rabbit mAb (upper), NF-κB1 p105/p50 (D7H5M) Rabbit mAb #12540 (middle), or Histone H3 (D1H2) XP® Rabbit mAb #4499 (lower).

To Purchase # 49095

Supporting Data

REACTIVITY H
SENSITIVITY Endogenous
MW (kDa) 50
Source/Isotype Rabbit IgG
Application Key:
  • WB-Western Blotting 
Species Cross-Reactivity Key:
  • H-Human 
  • Related Products

Product Information

Product Usage Information

Application Dilution
Western Blotting 1:1000

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Protocol

Specificity / Sensitivity

NF-κB1 p50 (F8H1O) Rabbit mAb detects endogenous levels of the active form (50 kDa) of human NF-κB1 protein when proteolytically cleaved. This antibody does not recognize the precursor form (120 kDa) of NF-κB1 protein or other isoforms.

Species Reactivity:

Human

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gly433 of human NF-κB1 p50 protein.

Background

Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).
Following IKK-mediated phosphorylation of p105 NF-κB at multiple sites (Ser921, 923, 927, and 932) on its carboxy-terminus, SCF/β-TrCP mediated processing produces the 50 kDa active form p50 (12,13).

Pathways

Explore pathways related to this product.


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.